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Abstract
One of the many challenges of developing an open user testbed such as QSCOUT [1] is pro-

viding an interface that maintains simplicity without compromising expressibility or control. This

interface comprises two distinct elements: a quantum assembly language designed for specifying

quantum circuits at the gate level, and a low-level counterpart used for describing gates in terms

of waveforms that realize specific quantum operations. Jaqal, or “Just another quantum assembly

language,” is the language used in QSCOUT for gate-level descriptions of quantum circuits [2, 3].

JaqalPaw, or “Jaqal pulses and waveforms,” is its pulse-level counterpart. This document con-

cerns the latter, and presents a description of the tools needed for precisely defining the underlying

waveforms associated with a gate primitive.

∗ dlobser@sandia.gov; https://qscout.sandia.gov
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I. BACKGROUND

QSCOUT uses a linear chain of 171Yb+ trapped ion qubits. Coherent operations on

these qubits involve manipulating both their internal spin states, as well as their collective

motional states, via optical Raman transitions. The specific experimental details of the

hardware involved are described in the QSCOUT manual [1], but a few of these details are

repeated here as they relate to certain aspects of the requirements for pulse-level control

of these qubits. Chief among these details is understanding the nature of these Raman

transitions, and the pulsed laser used to drive them.

For the purposes of this manual, these elements can be distilled down to two basic rules

of thumb:

• All operations must involve at least two tones to form a Raman transition.

• The higher frequency tone in each Raman transition must employ a frequency feedback

correction.

The specific details of how this frequency feedback system works, and why it is needed, are

described in the QSCOUT manual [1, §IVB, §VIA2] and briefly overviewed in section IV.

Beyond these basic rules, there are other subtleties in how these Raman beams can be con-

figured, such as co- or counter-propagating for motionally insensitive or sensitive operations

respectively. Counter-propagating gates are achieved via the use of a global beam, which

is driven by a specific hardware channel (channel zero by convention) and will be labeled

GLOBAL_BEAM. All other channels are used for individual qubit addressing.

From the perspective of engineering custom gates in terms of raw waveform data, it is

imperative that the user have access to the latest calibration data. Because calibration data

is subject to change immediately prior to running a Jaqal program on the experimental

apparatus, this information is exposed in the form of variables that are updated with the

latest calibration data at run time. Users are thus expected to reference these variables

in their pulse definitions in order to ensure that their gates make use of the most recent

calibrated data.

However, there are a number of details, independent of the specific knowledge of the

calibration parameters, that are necessary for a basic understanding of how to use JaqalPaw

to compose specific waveforms. These details will be the primary focus of this manual, and
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will build from a kernel of basic elements that require no specific experimental knowledge of

the QSCOUT system.

II. ANATOMY OF A GATE PULSE CLASS

Rather than developing a custom language for defining gates at the pulse level, JaqalPaw

is written purely in Python and requires a simple set of conventions. The first line in a Jaqal

program should contain the desired set of gate definitions that need to be referenced. This

import has the form

from GateDefinitionFileName.GateDefinitionClassName usepulses *

This references a Python class which contains member functions that can optionally be

exposed to Jaqal as long as the function name has a “gate_” prefix. These functions are

then directly accessible in Jaqal and are identified by the function name where gate_ is

implicitly stripped.

class GatePulse:

def gate_G(self, qubit):

return ...

from GateFile.GatePulse usepulses *
register q[8]

G q[2]

EX. 1: A side by side comparison of JaqalPaw (left) with Jaqal (right).
The gate gate_G is accessed in Jaqal as G.

The function’s argument signature, with the exception of self, can be used for passing

input arguments from Jaqal. In the above example, the gate G has a single input argument

that corresponds to the target qubit. The body of the gate definition function is up to the

user, as JaqalPaw simply uses Python 3. Likewise, any additional helper functions can be

included and should simply leave off the gate_ prefix. Gate pulse definition classes do not use
__init__ methods, but instead make use of class-level attributes for passing in calibration

data. Calibration parameters always have a type annotation, and they will be overwritten

at run time. In order to access the standard calibration parameters, a user-defined class

should inherit a standard QSCOUT gate class such as qscout.v1.std. So an extension of

the GatePulse class might look like the following
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import numpy as np

from qscout.v1.QSCOUTBuiltins import QSCOUTBuiltins

class GatePulse(QSCOUTBuiltins):

calibrated_amplitude : float = 45.0

@staticmethod

def gauss(amp, sigma, num_points):

x_points = np.linspace(−1.0, 1.0, num_points)

return amp * np.exp(−x_points**2/2/sigma**2)

def gate_G(self, qubit, phi):

scaled_amp = self.calibrated_amplitude * phi / np.pi

amplitude_envelope = self.gauss(scaled_amp, .3, 7)

return [PulseData(...)]

EX. 2: A basic gate pulse class. Gate definitions start with gate_ and
return a list of PulseData objects. Calibration parameters are class-level

variables with type annotations.

This covers essentially all of the conventions used for constructing a simple gate pulse

class. The final detail is the return signature of a gate definition. A gate’s return signature

must always be a list, and that list must only contain PulseData objects, even if there is

only a single PulseData object in the list.

III. THE PULSE DATA CLASS

All of the low-level hardware control is exposed through the PulseData class, which is

designed specifically to target the custom “Octet” coherent control hardware developed for

QSCOUT. This class is effectively a Python dataclass [4], in that it simply carries a set of

parameters that are translated directly into a format sent to the coherent control hardware.

The full argument signature is shown in Fig. 1, and the purpose and usage of each argument
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will be described in the remainder of this section.

PulseData(channel, # output channel

dur, # total duration to apply parameters (s)

freq0=0, # tone 0 frequency (Hz)

phase0=0, # tone 0 phase (deg.)

amp0=0, # tone 0 amplitude (arb.)

freq1=0, # tone 1 frequency (Hz)

phase1=0, # tone 1 phase (deg.)

amp1=0, # tone 1 amplitude (arb.)

framerot0=0, # frame 0 virtual rotation (deg.)

framerot1=0, # frame 1 virtual rotation (deg.)

# metadata parameters (XXX_mask indicates per−tone settings)

sync_mask=0b00, # synchronize phase for current frequency

enable_mask=0b00, # toggle the output enable state

fb_enable_mask=0b00, # enable frequency correction

apply_at_end_mask=0b00, # apply frame rotation at end of pulse

rst_frame_mask=0b00, # reset accumulated frame rotation

fwd_frame0_mask=0b00, # forward frame 0

fwd_frame1_mask=0b00, # forward frame 1

inv_frame0_mask=0b00, # invert frame 0 sign

inv_frame1_mask=0b00, # invert frame 1 sign

waittrig=False) # wait for external trigger

FIG. 1: Full argument signature of PulseData .

PulseData at a bare minimum requires a channel and a duration, in which case the

output pulse will effectively be a simple NOP for the given duration since the other param-

eters default to zero. The remaining parameters can be separated into two categories: basic

waveform data such as frequency, phase, and amplitude, and metadata used for controlling

specific settings for the pulse. Each PulseData object contains information for two inde-

pendent tones that are digitally summed before being converted to an output waveform. As

opposed to an arbitrary waveform generator, these waveforms are always sinusoidal, but the

frequency, phase, and amplitude of the oscillations are specified by the user.

A. Controlling Frequency, Phase, and Amplitude

The physical units for these inputs are listed in Table I.
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Parameter Units Allowed Range Resolution
Time s t ∈ [9.77 ns, 2684.35456 s] 2.4414 ns

Frequency Hz f ∈ [−409.6MHz, 409.6MHz] 745.0581 µHz
Phase Degrees θ ∈ [−∞,∞] 3.2742e-10 deg.

Amplitude Arb. R ∈ [−100, 100] 6.1035e-3

TABLE I: The fundamental input units for frequency, phase, and
amplitude in PulseData. Note that the phase input is automatically
converted modulo 360 such that θ ∈ [−180◦, 180◦). Amplitude is

specified for a single tone, however the sum of the amplitude for two
tones on the same channel must obey this range.

These parameters can be controlled using three basic input types: a constant value, a

list of values for discrete modulation, and a tuple of values for spline modulation. For a

constant value input, that value is applied for the specified duration of the pulse. A very

simple single-tone square pulse can be defined as shown in Ex. 3.

def gate_G(self, qubit):

return [PulseData(qubit, # output channel

1.25e−6, # duration (s)

freq0=200e6, # frequency (Hz)

amp0=50, # amplitude (arb.)

phase0=0)] # phase (deg.)

EX. 3: A simple square pulse is defined in terms of constant parameters.

In Jaqal and JaqalPaw, gates are run back to back without any gaps unless strictly

specified by the user. This means that running the following Jaqal code will result in a

single square pulse that has 4 times the duration of G.

loop 4 {
G q[2]

}

If a gap is desired, this could be implemented as either a separate gap gate with a short

duration (e.g. one that returns [PulseData(qubit, 0.25e−6)]), or directly in the gate

definition. The back-to-back functionality applies to JaqalPaw in the same way it applies to

Jaqal. Namely, returning a list with multiple PulseData objects on the same channel will

be run in the order specified. Thus, the following three cases are equivalent1:

1 To keep the code concise, only amp0 is defined. freq0 has been omitted, but would generally be needed
to produce output on the hardware.
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def gate_G(self, qubit):

return [PulseData(qubit, 1.25e−6, amp0=50)]

def gate_gap(self, qubit):

return [PulseData(qubit, .25e−6)]

loop 4 {

G q[2]

gap q[2]

}

def gate_G_gap(self, qubit):

return [PulseData(qubit, 1.25e−6, amp0=50),

PulseData(qubit, 0.25e−6)]

loop 4 {

G_gap q[2]

}

def gate_G_gap_multi(self, qubit, loops):

return [PulseData(qubit, 1.25e−6, amp0=50),

PulseData(qubit, 0.25e−6)] * loops

G_gap_multi q[2] 4

EX. 4: Three equivalent ways of chaining pulses together. In these
examples, gaps are explicitly added after each pulse.

When a series of discrete updates to a parameter is needed, the input to the parameter is

a list of values. Discrete modulations are treated as a series of back-to-back square pulses,

where each pulse has the same time, t′, which evenly subdivides the total duration, t. In

other words, a list with N elements comprises N pulses each with duration t′ = t/N .

def gate_G(self, qubit):

return [PulseData(qubit,

5e−6,
freq0=200e6,

amp0=[10,30,20,50],

phase0=0)]
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EX. 5: Discrete updates are represented as a list of inputs and are
equally distributed across the duration of the pulse.

For continuous modulation via natural cubic splines, the input format simply changes

from a list, [...], to a tuple, (...). The input values are knots of the spline, and are also

equally distributed over the duration of the pulse. As opposed to the discrete case, a tuple

of k knots comprises k − 1 sets of spline coefficients used for interpolation, resulting in a

duration of t′ = t/(k − 1) between knots.
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def gate_G(self, qubit):

return [PulseData(qubit,

5e−6,
freq0=200e6,

amp0=(10,30,20,50),

phase0=0)]
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EX. 6: Smooth updates are represented as a tuple.

Multiple parameters can be modulated simultaneously and the length of the list/tuple can

differ across all parameters. Asymmetry between the length of different modulation inputs

is supported because the rules for equally distributing modulation data over the pulse time

are handled separately for each parameter.

def gate_G(self, qubit):

spline_amps = (10,30,20,50,20,60,30,50)

discrete_amps = [10,30,20,30,50]

return [PulseData(qubit,

5e−6,
freq0=200e6,

freq1=230e6,

amp0=spline_amps,

amp1=discrete_amps)] 0.00 1.00 2.00 3.00 4.00 5.00
0
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EX. 7: Different modulation types can be used across parameters.

Mixed modulation types on a single parameter are not currently supported in the form of

a direct parameter input. However, if one needs to combine modulation types on the same

parameter, then multiple PulseData objects can be included in the return list to construct

piecewise functions. The following example illustrates how one can construct a piecewise

function for a pulse, as well as how the natural cubic splines can be used to create linear

ramps when only two knots are specified.
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def gate_G(self, qubit):

return [PulseData(qubit, 2e−6,
amp0=(0,9,41,50)),

PulseData(qubit, 2e−6,
amp0=50),

PulseData(qubit, 2e−6,
amp0=(50,0))]

0.00 2.00 4.00 6.00
0

20

40

Time (µs)

A
m
pl
itu

de
(a
rb
.)

EX. 8: Piecewise functions can be constructed by chaining
PulseData objects together.

These parameters will be run in the order received on a per-channel basis. If multiple

channels are used, the data from each channel will be executed in parallel. In situations

where the total duration on each channel differs, channels will be padded with a NOP pulse

at the end to ensure the duration is matched across all channels at run time.

def gate_G(self, qubit):

return [PulseData(qubit, 2e−6,
amp0=(0,9,41,50)),

PulseData(qubit, 2e−6,
amp0=50),

PulseData(qubit, 2e−6,
amp0=(50,0)),

PulseData(GLOBAL_BEAM, 4.5e−6,
amp0=(0,30,20,70)] 0 1.50 3.00 4.50 6.000
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EX. 9: Chaining PulseData objects on different channels results in
parallel execution. Differences in cumulative duration will be padded

with a NOP pulse.

B. Virtual Rotations

In many systems, including QSCOUT, the ability to directly drive gates in all dimensions

is often challenging, especially for individually addressed qubits. Typically, two rotation axes

are accessible, e.g., x̂ and ŷ, in which case ẑ rotations must be handled differently.
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One approach is to treat ẑ rotations virtually. This generally involves redefining gates

with adjusted phase offsets to account for the accumulated virtual phase. However, the

Octet hardware handles virtual rotations at the hardware level. This allows gate definitions

to be decoupled from the context dependency associated with virtual rotations.

The nomenclature used by JaqalPaw is “frame rotation”, where the frame accumulates

the input rotations until explicitly reset. The input arguments to PulseData are framerot0

and framerot1. There is an important distinction between the 0 and 1 labels, which differ

from the tone labels.

Frame rotations are intended to represent a virtual equivalent of a physical gate. Because

QSCOUT’s gates use Raman transitions, the phase of the gate is determined by the difference

between the phase of the two Raman tones. Thus for co-propagating2 gates, where both

tones are set on the same channel, the frame rotation must only be applied to a single tone.

Two-qubit Mølmer-Sørensen gates often implement the motional sideband frequencies on a

single channel, and the other leg of the Raman transition on the GLOBAL_BEAM channel. The

red and blue sideband tones independently form Raman transitions with the global beam.

This means that the frame rotation must be applied to both red and blue tones to achieve

the proper virtual phase offset.

Other types of gate implementations may have an additional requirement that the virtual

phase be inverted. This condition may arise when the absorption and emission paths are

swapped. The effective phase of the gate relies on the phase difference between the two

tones. This means phase differences phase0=0, phase1=90 and phase0=−90, phase1=0

are essentially equivalent3.

To account for all of these situations, the framerot parameters must be forwarded to

the desired tones, and optionally inverted. This forwarding and inversion can be handled

on a per-tone basis, however the frame rotation information is independently tracked on a

per-channel basis.

Both the framerot0 and framerot1 inputs can be optionally forwarded to one or both

tones. Thus their treatment is slightly different than the other parameters such as freq0 and

freq1, which control tones 0 and 1 respectively. framerot1 can be used to track a second
2 Currently, QSCOUT is only using counter-propagating gates because of experimental requirements. How-
ever, co-propagating gates are mentioned here in terms of how one might implement them and some of
the design choices that were made in terms of co-propagating gates.

3 The mean phase differs between the two cases, but the beat note at 12.642 GHz formed by the Raman
beams will be equivalent between the two cases.
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frame, such as one associated with a motional mode. However, the hardware is currently

limited to tracking two frames per channel, and doesn’t impose any requirements about how

they are implemented. Rather, the convention used in QSCOUT is that the frame of the

qubit spin is tracked in frame0.

Frame rotations obey the same input requirements as the phase inputs listed in table I.

However, because the framerot inputs accumulate phase, this means that the inputs need

to be treated a little bit differently. Each application of a PulseData object with a constant

framerot will apply that phase with the beginning of the pulse by default. Discrete modu-

lations also obey the same behavior, consider the following definitions of gate_G which have

the same behavior.

def gate_G(self, qubit):

return [PulseData(qubit, 1e−6,
framerot0=10)

for _ in range(3)]

def gate_G(self, qubit):

return [PulseData(qubit, 3e−6,
framerot0=[10,10,10]

)] 0.00 1.00 2.00 3.00
0
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EX. 10: Frame rotation inputs are equivalent to phase, but their values
accumulate.

Example 10 only shows the value of the internal frame accumulator. Forwarding the

frame accumulator phase to specific tones requires setting metadata inputs in PulseData.

The structure of the metadata inputs is discussed in III C and outlined in Table III. In

Example 11, frame 0 is incremented by 15 degrees in each call to PulseData, but the

the metadata bits in fwd_frame0_mask and inv_frame0_mask are used to control how the

accumulated phase in frame 0 can be inverted and forwarded to the two tones.
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def gate_G(self, qubit):

return [PulseData(qubit, 1e−6,
framerot0=15,

fwd_frame0_mask=0b01,

inv_frame0_mask=0b00),

PulseData(qubit, 1e−6,
framerot0=15,

fwd_frame0_mask=0b10,

inv_frame0_mask=0b10),

PulseData(qubit, 1e−6,
framerot0=15,

fwd_frame0_mask=0b11,

inv_frame0_mask=0b01)]

0.00 1.00 2.00 3.00
-45
-30
-15
0
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EX. 11: Frames can be optionally applied by forwarding them to one or
both tones. Likewise, their sign can be inverted on a per-tone basis.

Note that both frame 0 and frame 1 can be forwarded during the same pulse. However,

frame 0 will take precedence if both frames are forwarded to the same tone.

There are a couple more metadata options for frame rotations. Mask settings for these

bits are frame specific (frame0 and frame1) and not tone specific (tone0 and tone1). The

first option is apply_at_end_mask, which will update the frame for the next pulse. This

is useful in situations such as accounting for AC Stark effects, where adding a small phase

shift in the rotating frame of the qubit after the pulse ends is necessary for global phase

synchronization. The second option is rst_frame_mask, which will clear the accumulated

phase in the frame. rst_frame_mask always happens at the beginning of a pulse, so a

simultaneous application of rst_frame_mask and apply_at_end_mask will clear the frame

for the current pulse, and the frame will take on the frame input value with the next pulse.
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def gate_G(self, qubit):

return [PulseData(qubit, 1e−6,
framerot0=10,

apply_at_end_mask=1),

PulseData(qubit, 1e−6), # NOP

PulseData(qubit, 1e−6,
framerot0=−5,

rst_frame_mask=1)]

0.00 1.00 2.00 3.00
−5
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EX. 12: Frame rotations can optionally be applied with the next pulse,
and the frames can also be reset.

Frame rotations also accept spline inputs. In this case, the apply_at_end_mask is ignored,

and the spline will effectively start from the initial value of the accumulator and the final

value of the spline will be added to the frame accumulator.

def gate_G(self, qubit):

return [PulseData(qubit, 1e−6,
framerot0=15),

PulseData(qubit, 3e−6,
framerot0=(0,10,−10,−5)),

PulseData(qubit, 1e−6)] # NOP
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EX. 13: Frame rotations support spline inputs. Only the final value of
the spline is added to the accumulator.

While this might not seem immediately useful, accounting for AC Stark shifts via splines

offers certain advantages. For example, the frequency offset associated with an AC Stark

shift as a function of pulse amplitude can be represented as the integral of the pulse shape

and normalized to the total phase offset from the resulting Stark shift. The benefits in this

case are twofold:

• Time-dependent frequency variations are automatically accounted for via the time-

dependent phase, allowing one to more closely match resonance conditions during the
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entire pulse.

• Using frequencies in the natural (unshifted) frame of the qubit greatly simplifies the

use of the global synchronization capabilities of the Octet.

C. Metadata

Each PulseData object contains a number of entries designed to control certain operations

or state associated with the pulse. The list of metadata parameters is shown in Table II.

All metadata parameters are listed for the sake of completeness, but users should beware

of using certain inputs. Parameters that should generally be avoided are enable_mask and

waittrig. enable_mask will change the default output state to off, resulting in a zero

output. waittrig is used for handshaking with other control hardware to ensure that

sequences run after other experimental processes have reached the correct state.

Parameter Type Default Description
sync_mask int 0b00 Synchronize phase for current frequency

enable_mask int 0b00 Toggle the output enable state
fb_enable_mask int 0b00 Enable frequency correction
fwd_frame0_mask int 0b00 Forward frame 0
fwd_frame1_mask int 0b00 Forward frame 1
inv_frame0_mask int 0b00 Invert frame 0 sign
inv_frame1_mask int 0b00 Invert frame 1 sign
apply_at_end_mask int 0b00 Apply frame rotation at end of pulse
rst_frame_mask int 0b00 Reset accumulated frame rotation

waittrig bool False Wait for external trigger

TABLE II: Metadata inputs for PulseData objects. All inputs ending
in _mask range from 0-3 and follow a bitwise convention shown in
table III. The format 0b11 is Python notation for a base 2 integer,

which in this case corresponds to a decimal value of 3.

Metadata inputs ending with _mask take in tone-specific boolean values in the form of

an integer. This integer input is meant to be interpreted as a binary bit mask that is True

if the bit is 1, and False if the bit is 0. The least significant bit (LSB) corresponds to tone

0, and the most significant bit (MSB) corresponds to tone 1.
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Input Tone 1 Tone 0

0b00 - -

0b01 - X

0b10 X -

0b11 X X

TABLE III: Convention used for bitmask enables. The least significant
bit (LSB) controls tone 0, the most significant bit (MSB) controls tone

1. The same convention is used for rst_frame_mask and
apply_at_end_mask, however the bits apply to frame 0 and frame 1 for

the LSB and MSB respectively.

Most of the metadata is specific to frame rotations, covered in section III B. This leaves

two of the most critical metadata entries, sync_mask and fb_enable_mask. Improper ap-

plication of these inputs, or lack thereof, can lead to unexpected behavior. As such, these

two features have been given dedicated sections.

IV. FREQUENCY FEEDBACK

The frequency stabilization techniques used are detailed in the QSCOUT manual. A

quick summary of this aspect of the system will be provided for completeness. The Raman

transitions used for gates in QSCOUT are driven by a pulsed laser. This laser generates a

frequency comb in which the comb teeth are separated by ≈ 120 MHz. In order to drive the

qubit transition, one can make use of a harmonic of the comb that approximately bridges

the ≈12.642 GHz transition frequency. For 120 MHz, this is roughly the 105th harmonic,

where 105 × 120 MHz = 12.6 GHz. This leaves a ≈ 42 MHz offset from resonance, which

can easily be accounted for with an acousto-optic modulator (AOM).

The frequencies of the two tones applied for a gate must bridge this leftover 42 MHz

frequency difference4. However, the pulsed laser used does not have active stabilization

of the cavity length. Thermal variation will cause the cavity length to drift, affecting the

pulse repetition rate and thus the spacing of the frequency comb. This “breathing” of the

frequency comb requires that we actively correct for the resulting frequency offset between

4 In the actual QSCOUT platform, the numbers are slightly different and the resulting offset is closer to 28
MHz, but should be referenced from calibration data.
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the two comb teeth needed to achieve resonance. The variation in this repetition rate is

constantly tracked, and we translate this variation into the correct frequency offset which is

then forwarded to an output tone.

This frequency feedforward scheme is robust against the level of drift we normally en-

counter, and we’ve been able to yield coherence times exceeding 10 s [1]. However, it only

works if we offset a single tone in the Raman transition. In principle, we could add equal and

opposite corrections to each tone, with half the total correction being applied. But the sign

must differ between the two cases and poses additional challenges based on the configuration

of the tones. This correction needs to be properly scaled to account for the total frequency

variation at the particular harmonic to which we lock. While we can apply the correction

to either tone, this results in a sign change to the scaling factor.

The settings for the harmonic scaling and their sign are currently not reconfigurable

between gates. Rather, we’ve chosen a particular sign convention where the tone which

is higher in frequency—in the case of the example numbers given above, this would be 42

MHz higher—should have fb_enable_mask set high. The following code demonstrates how

co-propagating and counter-propagating gates might implement the feedback enable.

def gate_G_coprop(self, qubit):
return [PulseData(qubit, 1e−6, freq0=200e6,

freq1=242e6, fb_enable_mask=0b10)]

def gate_G_counterprop(self, qubit):
return [PulseData(qubit, 1e−6, freq0=200e6, fb_enable_mask=0b00),

PulseData(GLOBAL_BEAM, 1e−6, freq0=242e6, fb_enable_mask=0b01)]

V. GLOBAL PHASE SYNCHRONIZATION

One of the most critical aspects of implementing a proper gate is ensuring that the

phase of the gate is set correctly with respect to the qubit(s). In many cases, the frequencies

associated with a gate are subject to change. For example, a two-qubit gate needs to address

motional sidebands of the qubit transition, and certain gates may implement frequency

modulation. However, each hardware channel is equipped with only two custom direct

digital synthesizer (DDS) modules for the two output tones. Phase is continuous at the

boundary where a frequency update occurs, as shown in Fig. 2. The implication is that the

16



frequency
update

Time

A
m
pl
itu

de

FIG. 2: Waveform output after a change in frequency. The phase is
continuous at the boundary where the update occurs.

phase is generally arbitrary for the new frequency.

The absolute phase of the rf output is irrelevant from the perspective of a qubit initialized

to an energy eigenstate. However, the first gate applied to an initialized qubit sets the phase

from which all subsequent gates need to be referenced during a circuit. Thus a free-running

synthesizer at a fixed frequency on resonance with the qubit transition can easily perform

single-qubit gates about different axes by adjusting their phase relative to some initial value.

If the frequency is temporarily changed in order to perform another operation, then returning

to the original frequency will typically result in a phase offset from the original waveform as

shown in Fig. 3.

The resulting phase depends on the value of the other frequency and the duration for

which it was applied. While the phase offset can be easily calculated to determine a cor-

rection for returning to the original phase at the original frequency, this requires a lot of

phase bookkeeping and is strongly context dependent. The Octet hardware handles phase

bookkeeping automatically via a modification to the standard DDS design.

A global counter shared by all output tones is constantly being multiplied by the DDS

modules input frequency word. This produces a global phase, Φ = ωt, where ω is the input

frequency, and the time, t, is the value of the the global counter. The frequency input to

the DDS is delayed to match the latency of the multiplication stage such that the global
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FIG. 3: Waveform output after changing frequency and subsequently
returning to the original frequency at a later time. The final phase is not

aligned to the that of the original waveform.

phase tracks with the input frequency. Setting sync_mask high for a particular tone in a

PulseData object will send a single trigger at the beginning of the pulse. This trigger will

overwrite the DDS phase accumulator with the global phase, Φ. The resulting behavior is

equivalent to the second frequency update in Fig. 4.

It is worth noting that this mechanism functions the same, regardless of the other settings.

In other words, synchronization is not affected by other metadata such as fb_enable_mask

or settings on the other tone. Synchronization only depends on the frequency at the start

of the pulse5.

A. Synchronization Caveats

Gates that require higher-order frequency and phase relationships might require some

extra consideration. For example, the Mølmer-Sørensen gate requires that the red and blue

5 For frequency modulation, the synchronization step is applied with the beginning of the first element in
the modulation list or tuple.
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FIG. 4: Waveform output after a change in frequency, followed by a
return to the original frequency with a synchronization call applied. In
this case, the waveform experiences a discontinuous phase jump when

returning to the original frequency and phase.

sideband frequencies obey the relationship

fr + fb = 2fqubit (1)

where

fr ≡ fqubit − fSB (2)

fb ≡ fqubit + fSB. (3)

(4)

This condition maps equivalently onto phase such that

φr + φb = 2φqubit. (5)
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Because frequencies are digitized before being sent to hardware, rounding effects can result

in a small difference in the final frequencies such that

Fr + Fb 6= 2Fqubit, (6)

where F indicates the frequency word in the digital domain. This phase relationship is

difficult to predict from the vantage point of the compiler. It is up to the user to ensure

that the desired frequency relationships match in the digital domain to ensure proper phase

relationships between tones.

These rounding errors typically contribute a 0 or 1 bit difference from the desired result,

potentially adding a frequency offset of ≈ 745µHz. While this may seem negligible, it’s

important to understand that the global counter is generally set to zero when the hardware

is powered on. In some cases, the counter may be accumulating for weeks or months. The

global phase error between Fqubit and Fqubit + Feps is given by δφ = Fepstglobal, which can be

quite substantial when tglobal >> 0.

Helper functions are provided to simplify the calculations. For synchronization purposes,

discretize_frequency can be imported from jaqalpaw.utilities.helper_functions.

Similar functions discretize_amplitude and discretize_phase are also provided and

can be imported from the same path. The usage for discretize_frequency is shown in

Ex. 14 and involves converting frequencies to the digital domain before calculating their

frequency relationships.

In this case, the resonant qubit frequency is discretized, as well as the desired side-

band frequency, prior to the red and blue sideband frequency calculations. The frequency

inputs in the PulseData call take rsb_freq and bsb_freq, which have been calculated

using discretized frequencies. Note that the discretization effects need only be taken

into account for the relevant leg of the Raman transition, which in this case is given

by self.aom_center_frequency + self.effective_qubit_splitting.
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from jaqalpaw.utilities.helper_functions import discretize_frequency

class GatePulse:

aom_center_frequency: float = 200e6

effective_qubit_splitting: float = 28.123e6

motional_mode_frequencies: float = [2.5e6,

2.42e6,

2.38e6,

...]

amplitude_scaling: float = [.97,

.96,

.95,

...]

def gate_G(self, qubit1, qubit2):

global_aom_frequency = (self.aom_center_frequency +

self.effective_qubit_splitting)

individual_aom_frequency = self.aom_center_frequency

sb_freq = discretize_frequency(motional_mode_frequencies[0])

qubit_freq = discretize_frequency(global_aom_frequency)

rsb_freq = qubit_freq − sb_freq

bsb_freq = qubit_freq + sb_freq

return [PulseData(GLOBAL_BEAM, 100e−6,
freq0=rsb_freq,

freq1=bsb_freq,

fb_enable_mask=0b11,

sync_mask=0b11),

PulseData(qubit1, 100e−6,
freq0=individual_aom_frequency

sync_mask=0b01),

PulseData(qubit1, 100e−6,
freq0=individual_aom_frequency

sync_mask=0b01),

]

EX. 14: A basic gate pulse class.
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